华东理工刘鹏飞&华东师大王雪璐等:钼活化ZnIn2S4光催化剂促进光催化析氢耦合苯甲醇氧化
光催化水裂解制氢为解决能源危机提供了一条可行的途径。然而,四电子的水氧化反应迟缓严重制约了水的分解效率。
近日,华东理工大学刘鹏飞副教授和华东师范大学王雪璐研究员等人在Science China Materials发表研究论文,报道了掺杂Mo的ZnIn2S4(Mo-ZIS)光催化剂,通过与动力学上有利的苯甲醇(BA)的氧化反应协同整合,显著促进了光催化析氢反应。
本文要点
1) 高价和不饱和Mo不仅促进光生载流子的分离,还促进BA的活化,从而加速BA的氧化。此外,Mo掺杂调节了ZIS的能带结构,增强了光催化剂的氧化能力,而不会引起BA的过度氧化。
2) Mo-ZIS光催化剂在不需要贵金属助催化剂的情况下,具有较高的析氢速率(16,353 μmol g−1 h−1)和苯甲醛产率(13,942 μmol g−1 h−1),显著优于ZIS光催化剂.
3) 通过调节BA与溶剂之间的氢键网络强度来调节中间体在Mo-ZIS表面的解吸过程,Mo-ZIS的BAD产率为23,068 μmol g−1 h−1,相比于乙腈溶液中的反应速率提高了65%。
本研究提出了一种有价值的将光催化制氢与选择性有机产物转化相结合的策略, 为开发新型光催化剂,实现高效太阳能转化提供了新的见解。
Figure 1. (a) SEM image of Mo-ZIS-150. (b) HRTEM image of Mo-ZIS-150, displaying the lattice structure of pristine ZIS. (c) HRTEM image of Mo-ZIS-150 at a high magnification, showing the lattice fringe of 0.32 nm, which is matched with (102) space of hexagonal ZIS, revealing the hexagonal crystalline structure of ZIS. (d) HAADF-STEM image and corresponding EDS elemental maps of Zn, In, S and Mo in Mo-ZIS-150, demonstrating the uniform distribution of the elements. (e) XRD patterns of ZIS and Mo-ZIS, showing the preservation of the ZIS crystal structure after doping with Mo atoms. (f) The enlarged diffraction peaks of ZIS and Mo-ZIS-150 at (102) in (a), showing that Mo-ZIS-150 slight shifts to a higher angle. (g) Raman spectra of MoS2, MoO3 and Mo-ZIS-150, showing that the bonds of Mo–S existing in Mo-ZIS-150.
Figure 2. (a) Time-dependent H2 production and (b) comparison of photocatalytic H2 and PhCHO production rates of ZIS, Mo-ZIS-50, Mo-ZIS-100, Mo-ZIS-150 and Mo-ZIS-200. (c) Photocatalytic activity of BA over Mo-ZIS-150 by adding different scavengers under light radiation.
Figure 3. (a) UV-vis absorbance spectra of the ZIS and Mo-ZIS-150. (b) Electronic band structures of the ZIS and Mo-ZIS-150, revealing a positive shift in the potential of the CB and the VB compared with pristine ZIS. (c) PL spectra of the ZIS and Mo-ZIS-150, excited at a wavelength of 450 nm. (d) Photocurrent responses for ZIS and Mo-ZIS-150. (e) EIS curves of the ZIS and Mo-ZIS-150 measured at 1.23 V vs. RHE under a frequency range of 0.1 to 100.0 kHz. (f) TRPL spectra of the ZIS and Mo-ZIS-150 under 350-nm excitation at 298 K.
Figure 4. (a) The photocatalytic performance for hydrogen production and the conversion rate of BAD at different solvent ratios of water (W) to acetonitrile (C) under full-spectrum illumination. The self-diffusion coefficients of BA and (b) its hydrogen production performance, and (c) BAD production performance under different C:W ratios in the DOSY experiments conducted at 275 K. (d) The proposed reaction pathways for photocatalytic BA conversions over Mo-ZIS-150.
论文信息
Yang Fan Yu, Xiao Meng You, Yang Zhang, Yu Peng, Xue Lu Wang, Peng Fei Liu, Hua Gui Yang. Mo-activated ZnIn2S4 photocatalyst for enhanced hydrogen evolution coupled with benzyl alcohol oxidation. Sci. China Mater. (2024).
声明:本文仅用于学术文章转载分享,不做盈利使用,如有侵权,请及时联系小编删除。